Application of MXene as a new generation of highly conductive coating materials for electromembrane-surrounded solid-phase microextraction

Author:

Esrafili Ali12,Ghambarian Mahnaz3,Yousefi Mahmood2,Hosseini Sharieh4

Affiliation:

1. Research Center for Environmental Health Technology, Iran University of Medical Sciences , Tehran , Iran

2. Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences , Tehran , Iran

3. Iranian Research and Development Center for Chemical Industries, ACECR , Tehran , Iran

4. Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University , Tehran , Iran

Abstract

Abstract For the first time, highly conductive thickly layered two-dimensional titanium carbide (MXene) was applied as a new coating agent for electromembrane-surrounded solid-phase microextraction (SPME) of triadimenol and iprodione as two model analytes. Preparation of the desired coated electrode was carried out using electrophoretic deposition of MXene on the surface of platinum electrode. Characterization of the prepared coated electrode was conducted using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The coated electrode was located inside a hollow fiber membrane impregnated by 2-nitrophenyl octyl ether as the supported liquid membrane (SLM), while an aqueous solution was injected inside the hollow fiber lumen. Separation and quantification of the analytes were carried out using a gas chromatography instrument equipped with mass spectrometric detection. The effective parameters of the microextraction procedure comprising pHs of sample solution and the acceptor phase, composition of the SLM, extraction time, and the applied voltage were optimized using one-variable at-a-time method. Under the optimal conditions, the calibration curves of the analytes were linear (R 2 > 0.9973) in the range of 0.3–250.0 and 0.5–250.0 ng mL−1 for triadimenol and iprodione, respectively. The limit of detections was determined to be 0.10 and 0.15 ng mL−1 for triadimenol and iprodione, respectively. Repeatability and reproducibility of the method were evaluated by the calculation of intra-day and inter-day relative standard deviations (%). The applicability of the method was evaluated by quantitative analysis of the model analytes in environmental water samples. Relative recoveries in the range of 87.31–102.7% confirmed that the prepared coated electrode can be considered a reliable option in electromembrane-surrounded SPME techniques.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3