Tailoring nanostructured catalysts for electrochemical energy conversion systems

Author:

Gago Aldo S.,Habrioux Aurelien1,Alonso-Vante Nicolas1

Affiliation:

1. 1IC2MP UMR-CNRS 7285, University of Poitiers, 4 rue Michel Brunet, B27-BP633, 86022, Poitiers, France

Abstract

AbstractThis review covers topics related to the synthesis of nanoparticles, the anodic and cathodic electrochemical reactions and low temperature electrochemical energy devices. The thermodynamic aspects of nucleation and growth of nanoparticles are discussed. Different methods of chemical synthesis such as w/o microemulsion, Bönnemann, polyol and carbonyl are presented. How the electrochemical reactions take place on the surface of the catalytic nanoparticles and the importance of the substrate is put in evidence. The use of nanomaterials in low temperature energy devices such as H2/O2 polymer electrolyte or proton exchange membrane fuel cell (PEMFC) and micro-direct methanol fuel cell (μDMFC), as well as recent progress and durability, is discussed. Special attention is given to the novel laminar flow fuel cell (LFFC). This review starts with the genesis of catalytic nanoparticles, continues with the surface electrochemical reactions that occur on them, and finally it discusses their application in electrochemical energy devices such as low temperature fuel cells or Li-air batteries.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3