Promoted charge separation and specific surface area via interlacing of N-doped titanium dioxide nanotubes on carbon nitride nanosheets for photocatalytic degradation of Rhodamine B

Author:

Lee Jong-Hoon1,Mun Seong-Jun1,Lee Seul-Yi12,Park Soo-Jin1

Affiliation:

1. Department of Chemistry, Inha University , 100 Inharo , Incheon 22212 , Republic of Korea

2. Department of Mechanical Engineering and Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University , Blacksburg , VA 24061 , United States of America

Abstract

Abstract Titanium dioxide (TiO2) has been regarded as a promising catalyst owing to its superior charge transport properties in photocatalytic degradation of organic pollutants and photocatalytic hydrogen generation. However, a major bottleneck toward the utilization of TiO2 photocatalysts is inefficient exploitation of visible light and low adsorption behavior. To address this issue, we fabricated a hybrid nanocomposite composed of one-dimensional N-doped TiO2 nanotubes (N-TNTs) and two-dimensional graphitic carbon nitride nanosheets (g-CNNs) to improve photocatalytic behavior. Furthermore, photogenerated electron–hole pairs in the hybrid N-TNT/g-CNN composites were efficiently separated by introducing g-CNNs. In addition, the improved specific surface area provided many active sites, resulting in higher photocatalytic reactions in kinetics. Based on these features, the Rhodamine B photocatalytic degradation efficiency was the highest, ∼85%, under solar-light irradiation in the N-TNT/g-CNN composites (7 wt% of the g-CNN content), which is two times higher than that of the N-TNT. Moreover, excellent durability and stability were observed after four cycles, which can be attributed to the extended optical absorption range and enhanced separation of the photogenerated electron–hole pairs.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3