Cellulose hydrogel skeleton by extrusion 3D printing of solution

Author:

Hu Xiangzhou1,Yang Zhijie1,Kang Senxian1,Jiang Man1,Zhou Zuowan1,Gou Jihua2,Hui David3,He Jing4

Affiliation:

1. Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University , Chengdu , 610031 , China

2. Department of Mechanical and Aerospace Engineering, University of Central Florida , Orlando , FL 32816 , United States of America

3. Composite Material Research Laboratory, Department of Mechanical Engineering, University of New Orleans , New Orleans , LA 70148 , United States of America

4. Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs , Chengdu 610041 , China

Abstract

Abstract Cellulose is the most abundant natural polymer on earth, which has obtained increasing interest in the field of functional materials development for its renewable, high mechanical performance and environmental benign. In this study, the traditional processing method (wet spinning and film production) of cellulose-based materials was applied by using cellulose solution for 3D printing, which can directly build complex 3D patterns. Herein, a natural cellulose is dissolved in an effective mixed aqueous solution of dimethyl sulfoxide (DMSO) and tetrabutylammonium hydroxide (TBAH). The cellulose solution extrusion was controlled by a modified fused deposition modeling (FDM) 3D printer. During the controlled extrusion 3D printing process, the viscous cellulose solution will gelifies and further solidifies into a predetermined 3D pattern at room temperature in air. Subsequently, a cellulose hydrogel skeleton was obtained, when the 3D pattern was solvent-exchanged with deionized water. Finally, the mechanical and swelling performance of the cellulose hydrogel scaffold was improved by a cross-linking agent treatment method. With treatment of the 3D printed scaffolds in 0.8 wt% cross-linking agent solution, the obtained cellulose hydrogel could absorb 28 g/g water, and the compression strength was 96 kPa. This work provided an efficient way to prepare natural cellulose hydrogel by 3D printing under room temperature.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3