Exploring hardware accelerator offload for the Internet of Things

Author:

Cooke Ryan A.1ORCID,Fahmy Suhaib A.1

Affiliation:

1. 251402 University of Warwick , School of Engineering , Library Road , Coventry , , United Kingdom

Abstract

Abstract The Internet of Things is manifested through a large number of low-capability connected devices. This means that for many applications, computation must be offloaded to more capable platforms. While this has typically been cloud datacenters accessed over the Internet, this is not feasible for latency sensitive applications. In this paper we investigate the interplay between three factors that contribute to overall application latency when offloading computations in IoT applications. First, different platforms can reduce computation latency by differing amounts. Second, these platforms can be traditional server-based or emerging network-attached, which exhibit differing data ingestion latencies. Finally, where these platforms are deployed in the network has a significant impact on the network traversal latency. All these factors contributed to overall application latency, and hence the efficacy of computational offload. We show that network-attached acceleration scales better to further network locations and smaller base computation times that traditional server based approaches.

Funder

Alan Turing Institute

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3