Machine learning in sensor identification for industrial systems

Author:

Weber Lucas1ORCID,Lenz Richard1ORCID

Affiliation:

1. Technical Faculty – Department of Computer Science Chair 6 , Friedrich-Alexander Universität Erlangen , D-91058 Erlangen , Germany

Abstract

Abstract This paper explores the potential and limitations of machine learning for sensor signal identification in complex industrial systems. The objective is a tool to assist engineers in finding the correct inputs to digital twins and simulations from a set of unlabeled sensor signals. A naive end-to-end machine learning approach is usually not applicable to this task, as it would require many comparable industrial systems to learn from. We present a semi-structured approach that uses observations from the manual classification of time series and combines different algorithms to partition the set of signals into smaller groups of signals that share common characteristics. Using a real-world dataset from several power plants, we evaluate our solution for scaling-invariant measurement identification and functional relationship inference using change-point correlations.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3