Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs

Author:

Böckling Martin1,Paulheim Heiko1,Detzler Sarah2

Affiliation:

1. University of Mannheim, Data and Web Science Group , B6, 26 , 68159 Mannheim , Germany

2. SAP SE , Dietmar-Hopp-Allee 16 , 69190 Walldorf , Germany

Abstract

Abstract The frequency of wildfires increases yearly and poses a constant threat to the environment and human beings. Different factors, for example surrounding infrastructure to an area (e.g., campfire sites or power lines) contribute to the occurrence of wildfires. In this paper, we propose using a Spatio-Temporal Knowledge Graph (STKG) based on OpenStreetMap (OSM) data for modeling such infrastructure. Based on that knowledge graph, we use the RDF2vec approach to create embeddings for predicting wildfires, and we align different vector spaces generated at each temporal step by partial rotation. In an experimental study, we determine the effect of the surrounding infrastructure by comparing different data composition strategies, which involve a prediction based on tabular data, a combination of tabular data and embeddings, and solely embeddings. We show that the incorporation of the STKG increases the prediction quality of wildfires.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3