From LiDAR to deep learning: A case study of computer-assisted approaches to the archaeology of Guadalupe and northeast Honduras

Author:

Lyons Mike1,Fecher Franziska2,Reindel Markus3

Affiliation:

1. Institute for Archaeology and Cultural Anthropology , Department for the Anthropology of the Americas , Oxfordstr. 15 , Bonn , Germany

2. University of Zurich , Department of Archaeology , Prehistoric Archaeology Division , Zurich , Switzerland

3. German Archaeological Institute (DAI) , Commission for Archaeology of Non-European Cultures (KAAK) , Dürenstr. 35-37 , Bonn , Germany

Abstract

Abstract Archaeologists are interested in better understanding matters of our human past based on material culture. The tools we use to approach archaeological research questions range from the trowel and brush to, more recently, even those of artificial intelligence. As access to computing technology has increased over time, the breadth of computer-assisted methods in archaeology has also increased. This proliferation has provided us a considerable toolset towards engaging both new and long-standing questions, especially as interdisciplinary collaboration between archaeologists, computer scientists, and engineers continues to grow. As an example of an archaeological project engaging in computer-based approaches, the Guadalupe/Colón Archaeological Project is presented as a case study. Project applications and methodologies range from the regional-scale identification of sites using a geographic information system (GIS) or light detection and ranging (LiDAR) down to the microscopic scale of classifying ceramic materials with convolutional neural networks. Methods relating to the 3D modeling of sites, features, and artifacts and the benefits therein are also explored. In this paper, an overview of the methods used by the project is covered, which includes 1) predictive modeling using a GIS slope analysis for the identification of possible site locations, 2) structure from motion (SfM) drone imagery for site mapping and characterization, 3) airborne LiDAR for site identification, mapping, and characterization, 4) 3D modeling of stone features for improved visualization, 5) 3D modeling of ceramic artifacts for more efficient documentation, and 6) the application of deep learning for automated classification of ceramic materials in thin section. These approaches are discussed and critically considered with the understanding that interdisciplinary cooperation between domain experts in engineering, computer science, and archaeology is an important means of improving and expanding upon digital methodologies in archaeology as a whole.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3