Enabling data-centric AI through data quality management and data literacy

Author:

Abedjan Ziawasch1

Affiliation:

1. Leibniz Universität Hannover , Institut für praktische Informatik, Fachgebiet Datenbanken und Informationssysteme , Welfengarten 1 , Hannover , Germany

Abstract

Abstract Data is being produced at an intractable pace. At the same time, there is an insatiable interest in using such data for use cases that span all imaginable domains, including health, climate, business, and gaming. Beyond the novel socio-technical challenges that surround data-driven innovations, there are still open data processing challenges that impede the usability of data-driven techniques. It is commonly acknowledged that overcoming heterogeneity of data with regard to syntax and semantics to combine various sources for a common goal is a major bottleneck. Furthermore, the quality of such data is always under question as the data science pipelines today are highly ad-hoc and without the necessary care for provenance. Finally, quality criteria that go beyond the syntactical and semantic correctness of individual values but also incorporate population-level constraints, such as equal parity and opportunity with regard to protected groups, play a more and more important role in this process. Traditional research on data integration was focused on post-merger integration of companies, where customer or product databases had to be integrated. While this is often hard enough, today the challenges aggravate because of the fact that more stakeholders are using data analytics tools to derive domain-specific insights. I call this phenomenon the democratization of data science, a process, which is both challenging and necessary. Novel systems need to be user-friendly in a way that not only trained database admins can handle them but also less computer science savvy stakeholders. Thus, our research focuses on scalable example-driven techniques for data preparation and curation. Furthermore, we believe that it is important to educate the breadth of society on implications of a data-driven world and actively promote the concept of data literacy as a fundamental competence.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Enabled Segmentation Targeting and Positioning (STP) in the Service Industry;Advances in Marketing, Customer Relationship Management, and E-Services;2024-07-26

2. A Data-Centric AI Paradigm for Socio-Industrial and Global Challenges;Electronics;2024-06-01

3. Data Literacy and Artificial Intelligence in Higher Education;Advances in Educational Technologies and Instructional Design;2024-03-22

4. Evaluation of deep unsupervised anomaly detection methods with a data-centric approach for on-line inspection;Computers in Industry;2023-04

5. A Data Quality Assessment and Control Method in Multiple Products Manufacturing Process;2022 5th International Conference on Data Science and Information Technology (DSIT);2022-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3