Artificial intelligence for molecular communication

Author:

Bartunik Max1,Kirchner Jens1,Keszocze Oliver2

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Technische Elektronik , Erlangen , Germany

2. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hardware-Software-Co-Design , Erlangen , Germany

Abstract

Abstract Molecular communication is a novel approach for data transmission between miniaturised devices, especially in contexts where electrical signals are to be avoided. The communication is based on sending molecules (or other particles) at nanoscale through a typically fluid channel instead of the “classical” approach of sending electrons over a wire. Molecular communication devices have a large potential in future medical applications as they offer an alternative to antenna-based transmission systems that may not be applicable due to size, temperature, or radiation constraints. The communication is achieved by transforming a digital signal into concentrations of molecules that represent the signal. These molecules are then detected at the other end of the communication channel and transformed back into a digital signal. Accurately modeling the transmission channel is often not possible which may be due to a lack of data or time-varying parameters of the channel (e.g., the movements of a person wearing a medical device). This makes the process of demodulating the signal (i.e., signal classification) very difficult. Many approaches for demodulation have been discussed in the literature with one particular approach having tremendous success – artificial neural networks. These artificial networks imitate the decision process in the human brain and are capable of reliably classifying even rather noisy input data. Training such a network relies on a large set of training data. As molecular communication as a technology is still in its early development phase, this data is not always readily available. In this paper, we discuss neural network-based demodulation approaches relying on synthetic simulation data based on theoretical channel models as well as works that base their network on actual measurements produced by a prototype test bed. In this work, we give a general overview over the field molecular communication, discuss the challenges in the demodulations process of transmitted signals, and present approaches to these challenges that are based on artificial neural networks.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating Network and System Performance with Molecular Communication in Network Coding for Wireless Applications;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

2. State-of-the-Art and Development of 6G Communications;Lecture Notes in Networks and Systems;2024

3. Survey on Wireless Information Energy Transfer (WIET) and related applications in 6G Internet of NanoThings (IoNT);Proceedings of the Indian National Science Academy;2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3