Affiliation:
1. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Technische Elektronik , Erlangen , Germany
2. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Hardware-Software-Co-Design , Erlangen , Germany
Abstract
Abstract
Molecular communication is a novel approach for data transmission between miniaturised devices, especially in contexts where electrical signals are to be avoided. The communication is based on sending molecules (or other particles) at nanoscale through a typically fluid channel instead of the “classical” approach of sending electrons over a wire. Molecular communication devices have a large potential in future medical applications as they offer an alternative to antenna-based transmission systems that may not be applicable due to size, temperature, or radiation constraints. The communication is achieved by transforming a digital signal into concentrations of molecules that represent the signal. These molecules are then detected at the other end of the communication channel and transformed back into a digital signal. Accurately modeling the transmission channel is often not possible which may be due to a lack of data or time-varying parameters of the channel (e.g., the movements of a person wearing a medical device). This makes the process of demodulating the signal (i.e., signal classification) very difficult. Many approaches for demodulation have been discussed in the literature with one particular approach having tremendous success – artificial neural networks. These artificial networks imitate the decision process in the human brain and are capable of reliably classifying even rather noisy input data. Training such a network relies on a large set of training data. As molecular communication as a technology is still in its early development phase, this data is not always readily available. In this paper, we discuss neural network-based demodulation approaches relying on synthetic simulation data based on theoretical channel models as well as works that base their network on actual measurements produced by a prototype test bed. In this work, we give a general overview over the field molecular communication, discuss the challenges in the demodulations process of transmitted signals, and present approaches to these challenges that are based on artificial neural networks.
Reference30 articles.
1. T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, and K. Arima, “Molecular communication for nanomachines using intercellular calcium signaling,” in 5th IEEE Conference on Nanotechnology, 2005, vol. 2, pp. 478–481, 2005.
2. T. Nakano, A. W. Eckford, and T. Haraguchi, Molecular Communication, Cambridge, Cambridge University Press, 2013.
3. T. Nakano and J.-Q. Liu, “Design and analysis of molecular relay channels: an information theoretic approach,” IEEE Trans. NanoBiosci., vol. 9, no. 3, pp. 213–221, 2010. https://doi.org/10.1109/tnb.2010.2050070.
4. M. Pierobon and I. F. Akyildiz, “Capacity of a diffusion-based molecular communication system with channel memory and molecular noise,” IEEE Trans. Inf. Theory, vol. 59, no. 2, pp. 942–954, 2013. https://doi.org/10.1109/tit.2012.2219496.
5. N. Farsad, W. Guo, and A. W. Eckford, “Tabletop molecular communication: text messages through chemical signals,” PLoS One, vol. 8, no. 12, p. e82935, 2013. https://doi.org/10.1371/journal.pone.0082935.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献