Impact of sneak paths on in-memory logic design in memristive crossbars

Author:

Datta Kamalika12,Deb Arighna3,Kole Abhoy1,Drechsler Rolf2

Affiliation:

1. Cyber-Physical Systems Department , MZH Bibliothekstrasse 5, 28359 Bremen , Germany

2. Institute of Computer Science, University of Bremen , MZH Bibliothekstrasse 5, 28359 Bremen , Germany

3. School of Electronics Engineering , KIIT DU , Bhubaneswar 751024 , India

Abstract

Abstract Resistive Random Access Memory (RRAM), also termed as memristors, is a non-volatile memory where information is stored in memory cells in the form of resistance. Due to its non-volatile resistive switching properties, memristors, in the form of crossbars, are used for storing information, neuromorpic computing, and logic synthesis. In spite of the wide range of applications, memristive crossbars suffer from a so-called sneak path problem which results in an erroneous reading of memristor’s state. Till date, no or very few logic synthesis approaches for in-memory computing have considered the sneak path problem during the realizations of Boolean functions. In other words, the effects of sneak paths on the Boolean function realizations in crossbars still remain an open problem. In this paper, we have addressed this issue. In particular, we study the impacts of function realizations in two memristive crossbar structures: Zero-Transistor-One-Resistor (0T1R) and One-Transistor-One-Resistor (1T1R) in the presence of sneak paths. Experimental analysis on IWLS and ISCAS-85 benchmarks shows that even in the presence of sneak paths, the 1T1R crossbar structures with multiple rows and columns are the most efficient as compared to the 1T1R structures with single row and multiple columns in terms of crossbar size and number of execution cycles.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3