Computational design of the novel building blocks for the metal-organic frameworks based on the organic ligand protected Cu4 cluster

Author:

Claveria-Cádiz Francisca12,Kuznetsov Aleksey E.3ORCID

Affiliation:

1. Programa de Doctorado Conjunto en Ciencias Mención Química , Universidad Técnica Federico Santa María , Avenida España N 1680, 2390123 , Valparaíso , Chile

2. Universidad de Valparaíso , Avenida. Gran Bretaña N 1111, 2360102 , Valparaíso , Chile

3. Departamento de Química , Universidad Técnica Federico Santa María , Av. Santa María 6400, 7660251, Santiago , Chile

Abstract

Abstract Metal-organic frameworks (MOFs) are tunable porous network compounds composed of inorganic nodes bound by various organic linkers. Here we report the density functional theory (DFT) study of the MOF novel building blocks made of the Cu4 clusters protected by four organic ligands having two phenyl rings and terminated either with Cl or Br atom (precursors 1 and 2, respectively). The research was performed both in the gas phase and with the implicit effects of acetonitrile included, with two functionals, B3LYP and PBE, both with and without the second-order dispersion correction. We analyzed the structural features of the precursors 1 and 2, their electronic structures, molecular electrostatic potential (MEP) distribution, and global reactivity parameters (GRPs). Both functionals resulted in the singlets of the precursors 1 and 2 as the most stable species. The precursor structures optimized with the hybrid functional were found to be quite similar for both halogens, both containing somewhat distorted from planarity Cu4 cluster, with the outer phenyls of the ligands rotated relative to the inner phenyls. With both halogens and both DFT approaches, the frontier molecular orbitals (FMOs) of the precursors 1 and 2 were shown to have quite similar compositions. The change of the substituent from Br to Cl was found to cause slight stabilizations or destabilizations of the HOMOs and LUMOs. The central parts and especially the inner phenyl ring parts of the precursors 1 and 2 were suggested to play a role of nucleophile in various chemical reactions due to the significant accumulation of negative electrostatic potential. Also, weak intermolecular interactions might exist between the ligands of neighboring precursor molecules. Finally, with both substituents the precursors 1 and 2 should be relatively unreactive and demonstrate thermodynamic stability. Further, the precursors 1 and 2 should be quite stable in oxidation reactions and more active in reduction processes. Generally, the substituent nature was shown not to affect significantly the reactivity of the precursors 1 and 2, as well as their other properties.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3