Identification of novel inhibitors of P13K/AKT pathways: an integrated in-silico study towards the development of a new therapeutic agent against ovarian cancer

Author:

Adedotun Ibrahim Olaide123,Abdul-Hammed Misbaudeen1ORCID,Egunjobi Basirat Temidayo2,Ismail Ubeydat Temitope1,Yusuf Jemilat Yetunde4,Afolabi Tolulope Irapada1,Gbadebo Ibrahim Olajide1

Affiliation:

1. Computational Biophysical Chemistry Unit, Department of Pure and Applied Chemistry , Ladoke Akintola University of Technology, LAUTECH , Ogbomoso , Oyo State , Nigeria

2. Department of Chemistry , University of Ibadan , Ibadan , Oyo State , Nigeria

3. Foresight Institute of Research and Translation , Ibadan , Oyo State , Nigeria

4. Universiti of Teknologi Petronas , Perak , Malaysia

Abstract

Abstract Ovarian cancer is a crucial gynaecological unmet medical disease with a high mortality rate. According to recent research, the phosphoinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways are hyper-activated in the majority of ovarian cancer patients, necessitating the use of inhibitors. Over the years, phytochemicals have been used as alternative sources of therapeutic agents due to their reported biological activities and limited side effects. Curcuma longa (Tumeric), a reported ayurvedic medicine has also been noted for its anti-cancer properties. Thus, 155 phytochemicals from this plant and 2 reference drugs were evaluated for their inhibitory prowess against P13K/AKT receptor using a computer-aided drug design approach. The binding scores and inhibiting efficiencies were obtained via virtual screening. Molinspiration Chemoinformatics and SwissADME tools were used to investigate the drug-likeness properties and oral bioavailability of the compounds selected, while the ADMET SAR-2 website was used to conduct the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis. Other analyses performed on the selected compounds include bioactivity, activity spectra for substances (PASS) prediction, binding mode, and molecular interaction. The results revealed that Hopenone 1 (−8.8 kcal mol−1) and Epriprocurcumenol (−7.8 kcal mol−1) are potent inhibitors of the P13K receptor, while Epiprocurcumenol (−9.0 kcal mol−1), Procurcuminol (−8.6 kcal mol−1) and Curlone (−8.3 kcal mol−1) are potential inhibitors of AKT receptor. In comparison to Topotecan and Melphalan, they have better binding affinities, oral bioavailability, drug-likeness characteristics, ADMET properties, bioactivities, PASS properties, binding mechanism, and also interact well with the active site of the target receptor. As a result, this preliminary investigation suggests that these chemicals should be studied further for the design of novel ovarian cancer therapeutics.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3