Biopolymeric composite materials for environmental applications

Author:

Moola Anil Kumar1ORCID,Prabhakar Muhil Raj2,Dey Baishali2,Paramasivan Balasubramanian2,Vangala Sita Manojgyna3,Jakkampudi Ramya3,Sathish Selvam4

Affiliation:

1. Department of Entomology, College of Agriculture Food and Environment, Agriculture Science Centre North , University of Kentucky , Lexington , KY , USA

2. Department of Biotechnology & Medical Engineering , National Institute of Technology Rourkela , Odisha , 769 008 , India

3. Department of Chemistry Services , Excelra Knowledge Solutions , Uppal , Hyderabad , 500039 , India

4. Department of Biotechnology , Bharathidasan University , Tiruchirappalli , Tamil Nadu , 620 024 , India

Abstract

Abstract The emerging phase of bioeconomy demands that human beings be concerned more with ecofriendly practices in every aspect of life. Thus, the demand for biopolymer/biopolymer-based composite materials has witnessed a surge in recent decades. Biopolymeric composites at macro, micro, and nano scales have various applications in environmental cleanup. Biopolymers from natural resources have established an important position owing to their easy availability, abundance, and biodegradability. This review reveals the advantages of biopolymer usage in the field of environmental remediation over conventional practices and also the advantages of biopolymer composites over general biopolymeric material. Further, it focuses on the recent rapid development of nanotechnology, which has led to significant advances in the design and synthesis of biopolymer-based nanocomposites, with higher specific surface areas that can be functionalized to strongly adsorb contaminants in comparison with conventional adsorbents. It also presents the biopolymer-based composite materials separated on the basis of scale commonly used for environmental applications such as the removal of dyes, oil–water separation, and air filtration. This review also summarizes the benefits and drawbacks on biopolymer composite usage along with future perspectives to give an idea on the areas for researchers to focus on in the future.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3