A SWOT analysis of artificial intelligence in diagnostic imaging in the developing world: making a case for a paradigm shift

Author:

Mumuni Abdul Nashirudeen1,Hasford Francis2,Udeme Nicholas Iniobong3,Dada Michael Oluwaseun3,Awojoyogbe Bamidele Omotayo3

Affiliation:

1. Department of Medical Imaging , University for Development Studies , Tamale , Ghana

2. Department of Medical Physics , University of Ghana, Ghana Atomic Energy Commission , Accra , Ghana

3. Department of Physics , Federal University of Technology , Minna , Nigeria

Abstract

Abstract Diagnostic imaging (DI) refers to techniques and methods of creating images of the body’s internal parts and organs with or without the use of ionizing radiation, for purposes of diagnosing, monitoring and characterizing diseases. By default, DI equipment are technology based and in recent times, there has been widespread automation of DI operations in high-income countries while low and middle-income countries (LMICs) are yet to gain traction in automated DI. Advanced DI techniques employ artificial intelligence (AI) protocols to enable imaging equipment perceive data more accurately than humans do, and yet automatically or under expert evaluation, make clinical decisions such as diagnosis and characterization of diseases. In this narrative review, SWOT analysis is used to examine the strengths, weaknesses, opportunities and threats associated with the deployment of AI-based DI protocols in LMICs. Drawing from this analysis, a case is then made to justify the need for widespread AI applications in DI in resource-poor settings. Among other strengths discussed, AI-based DI systems could enhance accuracies in diagnosis, monitoring, characterization of diseases and offer efficient image acquisition, processing, segmentation and analysis procedures, but may have weaknesses regarding the need for big data, huge initial and maintenance costs, and inadequate technical expertise of professionals. They present opportunities for synthetic modality transfer, increased access to imaging services, and protocol optimization; and threats of input training data biases, lack of regulatory frameworks and perceived fear of job losses among DI professionals. The analysis showed that successful integration of AI in DI procedures could position LMICs towards achievement of universal health coverage by 2030/2035. LMICs will however have to learn from the experiences of advanced settings, train critical staff in relevant areas of AI and proceed to develop in-house AI systems with all relevant stakeholders onboard.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3