Identification of potential inhibitors of thymidylate synthase (TS) (PDB ID: 6QXH) and nuclear factor kappa-B (NF–κB) (PDB ID: 1A3Q) from Capsicum annuum (bell pepper) towards the development of new therapeutic drugs against colorectal cancer (CRC)

Author:

Olajide Monsurat123,Abdul-Hammed Misbaudeen12ORCID,Bello Isah Adewale1,Adedotun Ibrahim Olaide2,Afolabi Tolulope Irapada2

Affiliation:

1. Department of Pure and Applied Chemistry , Ladoke Akintola University of Technology, Faculty of Pure and Applied Science , Along Ogbomoso Ilorin Expressway, Ladoke Akintola University Of Technology , Ogbomoso , Oyo , 210214 , Nigeria

2. Computational Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry , Ladoke Akintola University of Technology, Faculty of Pure and Applied Science , Ogbomoso , Oyo State , Nigeria

3. Department of Chemical Sciences , Crescent University Abeokuta , Abeokuta , Ogun State , Nigeria

Abstract

Abstract Colorectal cancer is the third most deadly cancer globally. Drug resistance and attendant side effects make the available standard anti-colorectal cancer drugs against target receptors inefficient. Phytochemicals from medicinal plants are safer, cheaper, effective, and heal diseases from the cellular level. This study is aimed at identifying potential inhibitors of thymidylate synthase (TS) and nuclear factor kappa-B (NF–κB) target receptors from Capsicum annuum towards the development of new therapeutic drugs against colorectal cancer via in silico approach. One hundred and fifty (150) ligands previously reported from Capsicum annuum were downloaded from the PubChem database and were subjected to chemo-informatics analyses such as ADMET, drug-likeness, oral bioavailability, bioactivity, and PASS prediction to ascertain their therapeutic and safety profile before docking. The ligands that passed the analyses were docked against TS and NF–κB in duplicate using a creditable docking tool (PyRx). Raltitrexed and emetine were used as the standard drug inhibitors for TS and NF–κB, respectively. The results obtained from this study showed that feruloyl-beta-D-glucose (8.45 kcal/mol), 5-O-caffeoylquinic acid (−8.40 kcal/mol), 5-O-caffeoylquinic acid methyl ester (−7.89 kcal/mol), feruloyl hexoside (−7.40 kcal/mol), O-glucopyranoside (−7.55 kcal/mol), and quercetin (−7.00 kcal/mol) shared the same binding pocket with TS while feruloyl-beta-D-glucose (−7.00 kcal/mol), chlorogenic acid (−6.90 kcal/mol), 5-O-caffeoylquinic acid (−6.90 kcal/mol) and feruloyl hexoside (−6.50 kcal/mol) shared the same pocket with NF–κB. These compounds were selected as best hits due to their excellent inhibitory efficiency and chemoinformatic profiles. Thus, the compounds may function as prospective lead compounds for developing a new anti-colorectal cancer drug.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3