Pseudo Focal Points Along Lorentzian Geodesics and Morse Index

Author:

Javaloyes Miguel Ángel1,Masiello Antonio2,Piccione Paolo3

Affiliation:

1. Departamento de Geometría y Topología Universidad de Granada, Campus Fuentenueva s/n, 18071 Granada, Spain

2. Dipartimento di Matematica Politecnico di Bari, Via Orabona 4, 70125, Bari, Italy

3. Departamento de Matemática Universidade de São Paulo, Rua do Matão 1010, São Paulo, Brasil

Abstract

Abstract Given a Lorentzian manifold (M, g), a geodesic γ in M and a timelike Jacobi field γ along γ, we introduce a special class of instants along γ that we call γ- pseudo conjugate (or focal relatively to some initial orthogonal submanifold). We prove that the γ-pseudo conjugate instants form a finite set, and their number equals the Morse index of (a suitable restriction of) the index form. This gives a Riemannian-like Morse index theorem. As special cases of the theory, we will consider geodesics in stationary and static Lorentzian manifolds, where the Jacobi field γ is obtained as the restriction of a globally defined timelike Killing vector field.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Reference10 articles.

1. On a formula for the spectral flow and its applications to appear;Benevieri;Math Nach

2. On the spectral flow in Lorentzian manifolds Mat Pura pp;Masiello;Appl,2003

3. A Morse index for geodesics in static Lorentz manifolds pp;Benci;Math Ann,1992

4. An intrinsic approach to the geodesical connectedness of stationary Lorentzian manifolds Comm pp;Giannoni;Anal Geom,1999

5. Morse relations for geodesics on stationary Lorentzian manifolds with boundary Topol Nonlinear pp;Giannoni;Methods Anal,1995

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bifurcation of Constant Mean Curvature Tori in Euclidean Spheres;Journal of Geometric Analysis;2011-09-23

2. Maslov index in semi-Riemannian submersions;Annals of Global Analysis and Geometry;2010-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3