Low-frequency cabin noise of rapid transit trains

Author:

Lee Hsiao Mun1,Lee Heow Pueh1

Affiliation:

1. Department of Mechanical Engineering, National University of Singapore , 9 Engineering Drive 1 , Singapore 117576 , Singapore

Abstract

Abstract Rapid transit or mass rapid transit (MRT) is a high-capacity public transport designed to carry a large number of passengers, especially during the peak hours. They are becoming very popular in major cities and some deem the presence of the rapid transit system in a city as a symbol of modern development and essential feature of urban life. As the rapid transit system expands, the traveling time on a rapid transit train may increase due to longer journey and cabin noise has become an environmental concern for the passengers. In the present study, we would attempt to do a more detailed study of the effect of viaduct height, in particular viaducts of different heights on the cabin noise of various rapid transit systems. The present study examined and benchmarked the cabin noise in terms of both dB(A) and dB(C) for four different rapid transit systems, namely part of the East-West line including the Tuas-West extension on elevated tracks with very high viaduct of the Singapore MRT System; part of Paris Line 2 from Anvers to Belleville station including a stretch of elevated track on viaduct; part of the Piccadilly line of London from Heathrow Airport to Green Park station with a stretch on surface ground; and finally part of Chongqing Line 3 from Gongmao to Lianglukou station across the Yangtze river. It was found that the cabin noise would be dominated by low-frequency content and would be better reflected if the measurements were presented in dB(C), especially for trains running on elevated tracks of greater height.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3