FL-NoiseMap: A Federated Learning-based privacy-preserving Urban Noise-Pollution Measurement System

Author:

Kumar Dheeraj1

Affiliation:

1. Department of Electronics and Communications Engineering , Indian Institute of Technology (IIT) Roorkee , Uttarakhand , India , 247667

Abstract

Abstract Increasing levels of noise pollution in urban environments are a primary cause of various physical and psychological health issues. There is an urgent requirement to manage environmental noise by assessing the current levels of noise pollution by gathering real-world data and building a fine-granularity real-time noise map. Traditionally, simulation-based, small-scale sensor-network-based, and participatory sensing-based approaches have been used to estimate noise levels in urban areas. These techniques are inadequate to gauge the prevalence of noise pollution in urban areas and have been shown to leak private user data. This paper proposes a novel federated learning-based urban noise mapping system, FL-NoiseMap, that significantly enhances the privacy of participating users without adversely affecting the application performance. We list several state-of-the-art urban noise monitoring systems that can be seamlessly ported to the federated learning-based paradigm and show that the existing privacy-preserving approaches can be used as an add-on to enhance participants’ privacy. Moreover, we design an “m-hop” application model modification approach for privacy preservation, unique to FL-NoiseMap. We also describe techniques to maintain data reliability for the proposed application. Numerical experiments on simulated datasets showcase the superiority of the proposed scheme in terms of users’ privacy preservation and noise map reliability. The proposed scheme achieves the lowest average normalized root mean square error in the range of 4% to 7% as the number of participants varies between 500 and 5000 while providing maximum coverage of over 95% among various competing algorithms. The proposed malicious contribution removal framework can decrease the average normalizedroot mean square error by more than 50% for simulations having up to 20% malicious users.

Publisher

Walter de Gruyter GmbH

Subject

Management, Monitoring, Policy and Law,Urban Studies,Acoustics and Ultrasonics

Reference96 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3