Case study on the audibility of siren-driven alert systems

Author:

Siliézar Jonathan1,Aumond Pierre1,Can Arnaud1,Chapron Paul2,Péroche Matthieu3

Affiliation:

1. Université Gustave Eiffel, CEREMA, UMRAE , F-44344 Bouguenais , France

2. LASTIG, IGN/ENSG, Université Gustave Eiffel , 73 Avenue de Paris, 94165 Saint-Mandé , France

3. LAGAM, Université Paul Valéry, Rte de Mende , 34090 Montpellier , France

Abstract

Abstract The civil security sirens are used by the authorities in a wide range of countries to signal an imminent or ongoing threat. Even if their sound level is known, it is nevertheless difficult to evaluate their audibility across a given zone, especially in complex urban environments. An experimental protocol was deployed around a siren installed in a town in France, to assess its audibility perceptually and through modeling. Sound level measurements during source activation were made with the NoiseCapture smartphone application at different distances and on several axes by a group of 25 participants. They were also asked to fill in a questionnaire on perceptual information about the siren such as its audibility, the perceived sound level, or the masking of the siren by passing vehicles. A comparison between acoustic measurement levels using NoiseCapture and simulated sound levels using NoiseModelling was performed. The results of this study validate the use of the Common Noise Assessment Methods in Europe model to evaluate the audibility of a warning system located in an urban environment within a radius of 2.8 km around the siren. Finally, a metric linking audibility to modeled sound level is proposed, enabling the development of siren audibility maps in the study area.

Publisher

Walter de Gruyter GmbH

Subject

Management, Monitoring, Policy and Law,Urban Studies,Acoustics and Ultrasonics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3