Holistic control of ship noise emissions

Author:

Borelli Davide,Gaggero Tomaso,Rizzuto Enrico,Schenone Corrado

Abstract

AbstractThe sustainability of anthropogenic activities at sea is recently gaining more and more attention. As regards shipping, emissions from ships into the environment of various nature (engine exhaust gases, anti-fouling paints leaching, ballast exchange, releases at sea of oil and other noxious liquid or solid cargoes, of sewage and of garbage) have been recognized as sources of pollution and therefore controlled and limited since a long time. The subject of noise emission has been identified only recently. To study the problem, the EU has funded, among others, the FP7 SILENV (Ship Innovative soLutions to rEduce Noise and Vibrations) project that run from 2010 to 2012. In the present work, the holistic approach followed within the project to characterize and control the ship as a source of noise is presented. Three types of noise emissions (in air, in water and inside the ship) are analyzed highlighting peculiarities and different strategies adopted to characterize the source, the impact on the receiver and the possible solutions to set limits to the ship emissions. The project outcome included a socalled “Green Label”: a set of new prenormative requirements defined for the three main areas mentioned above.

Publisher

Walter de Gruyter GmbH

Subject

Management, Monitoring, Policy and Law,Urban Studies,Acoustics and Ultrasonics

Reference7 articles.

1. Normative framework for ship noise : Present situation and future trends Noise Control Engineering;Badino;Journal,2012

2. Analysis of noise on board a ship during navigation and manoeuvres Ocean pp;Borelli;Engineering,2015

3. Approaches to Noise Exposure Proceedings of theSNAMEShip Vibration Symposium Arlington;Wehr;October,1978

4. Noise and vibration on board ship http dx doi org;Gibbons;Sound Vib,1975

5. Airborne noise emissions from ships : experimental characterisation of the source and propagation over land pp http dx doi org;Badino;Applied Acoustics,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3