The Red Hen Audio Tagger

Author:

Ghosal Sabyasachi1,Bennett Austin2,Turner Mark3ORCID

Affiliation:

1. Bosch Global Software Technologies Pvt Ltd , Bangalore , India

2. Bamboozoology LLC , San Francisco , CA , USA

3. Department of Cognitive Science , Case Western Reserve University , Cleveland , OH , USA

Abstract

Abstract The International Distributed Little Red Hen Lab, usually called “Red Hen Lab” or just “Red Hen”, is dedicated to research into multimodal communication. In this article, we introduce the Red Hen Audio Tagger (RHAT), a novel, publicly available open source platform developed by Red Hen Lab. RHAT employs deep learning models to tag audio elements frame by frame, generating metadata tags that can be utilized in various data formats for analysis. RHAT seamlessly integrates with widely used linguistic research tools like ELAN: the researcher can use RHAT to tag audio content automatically and display those tags alongside other ELAN annotation tiers. RHAT additionally complements existing Red Hen pipelines devoted to natural language processing, speech-to-text processing, body pose analysis, optical character recognition, named entity recognition, computer vision, semantic frame recognition, and so on. These cooperating Red Hen pipelines are research tools to advance the science of multimodal communication.

Funder

Google

Publisher

Walter de Gruyter GmbH

Reference12 articles.

1. Brugman, Hennie & Albert Russel. 2004. Annotating multimedia/multi-modal resources with ELAN. In Maria, Teresa Lino, Maria, Francisca Xavier, Fátima, Ferreira, Rute, Costa & Raquel, Silva (eds.), Proceedings of the fourth international conference on language resources and evaluation. Lisbon, Portugal: European Language Resources Association.

2. Dolan, Stephen. 2018. JQ, A lightweight and flexible command-line JSON processor, version jq1.6 [Computer program]. Available at: https://stedolan.github.io/jq.

3. Ford, Logan, Hao Tang, François Grondin & James Glass. 2019. A deep residual network for large-scale acoustic scene analysis. Interspeech 2019. 2568–2572. https://doi.org/10.21437/Interspeech.2019-2731.

4. Gemmeke, Jort F., Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Channing Moore, Manoj Plakal & Marvin Ritter. 2017. Audio set: An ontology and human-labeled dataset for audio events. In 2017 IEEE international conference on acoustics, speech & signal processing (ICASSP), 776–780. IEEE.

5. Gong, Yuan, Yu-An Chung & James Glass. 2021. AST: Audio spectrogram transformer. arXiv. https://doi.org/10.48550/arXiv.2104.01778.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3