Generating hypotheses for alternations at low and intermediate levels of schematicity. The use of Memory-based Learning

Author:

Pijpops Dirk1ORCID,Speelman Dirk2,van den Bosch Antal3

Affiliation:

1. University of Liège , Liège , Belgium

2. KU Leuven , Leuven , Belgium

3. Utrecht University , Utrecht , The Netherlands

Abstract

Abstract According to usage-based linguistics, language variation addresses a functional need of the language user. That functional need may be dependent on the lexical realization of the varying constructions. For instance, while it may be useful to have an argument structure alternation express a particular semantic distinction for particular verbs or themes, that same distinction may be less relevant for other verbs or themes. As such, it has been argued that language variation should be investigated at low levels of schematicity, e.g. by studying argument structure alternations separately for various verbs, themes, etc. In this paper, we develop a data-driven procedure to do so, based on Memory-based Learning (MBL). The procedure focusses on generating hypotheses, is scalable, and can work with small datasets. It consists of three steps: (i) choosing features for the MBL classifier, (ii) running MBL analyses and selecting which analyses to put under further scrutiny, and (iii) inspecting which features were most useful in predicting the choice of variant in these analyses. Finally, the hypotheses that are inferred from these features are put to the test on separate data. As an example study, we investigate the Dutch naar-alternation.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Walter de Gruyter GmbH

Subject

Linguistics and Language,Language and Linguistics

Reference42 articles.

1. Boas, Hans. 2010. The syntax-lexicon continuum in Construction Grammar. A case study of English communication verbs. Belgian Journal of Linguistics 24(1). 54–82. https://doi.org/10.1075/bjl.24.03boa.

2. Bosch, Antal van den & Joan Bresnan. 2015. Modeling dative alternations of individual children. In Proceedings of the sixth workshop on Cognitive Aspects of Computational Language Learning, 103–112. Lisbon, Portugal: Association for Computational Linguistics.

3. Bosch, Antal van den & Daelemans Walter. 2013. Implicit schemata and categories in Memory-based Language processing. Language and Speech 56(3). 309–328. https://doi.org/10.1177/0023830913484902.

4. Bresnan, Joan, Cueni Anna, Tatiana Nikitina & Rolf Harald Baayen. 2007. Predicting the dative alternation. In Gerolf Bouma, Irene Krämer & Joost Zwarts (eds.), Cognitive foundations of interpretation, 69–94. Amsterdam: Royal Netherlands Academy of Science.

5. Broccias, Cristiano. 2001. Allative and ablative at-constructions. In Mary Adronis, Christopher Ball, Elston Heide & Sylvain Neuvel (eds.), CLS 37: The Main Session. Papers from the 37th meeting of the Chicago Linguistic Society, 67–82. Chicago: Chicago Linguistic Society.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3