Using social media as a source of analysable material in phonetics and phonology – lenition in Spanish

Author:

Broś Karolina1ORCID

Affiliation:

1. University of Warsaw , Warszawa , Poland

Abstract

Abstract The COVID-19 pandemic has shown that alternative methods of data collection are necessary to continue working in certain fields of linguistics. This is a challenge for (socio)phoneticians and phonologists who have to rely on good quality sound but cannot do fieldwork or gather recordings in a traditional manner. In this paper, I show that audio recordings made via social media can help alleviate this problem. To this end, I compared samples from five speakers of dialectal Spanish recorded in a laboratory setting and via a social media application (WhatsApp). The analysis of temporal and spectral characteristics of consonants in postvocalic position shows that recordings made via social media can be successfully used for at least some types of sociophonetic analysis. They also provide some additional advantages for researchers: ease of data collection, potentially large speech corpora, and access to authentic, naturalistic speech which is uninhibited by laboratory conditions or the presence of a researcher and a professional recording device.

Funder

Narodowe Centrum Nauki

Publisher

Walter de Gruyter GmbH

Subject

Linguistics and Language,Language and Linguistics

Reference37 articles.

1. Baldwin, Timothy, Paul Cook, Marco Lui, Andrew MacKinlay & Li Wang. 2013. How noisy social media text, how different social media sources? In Ruslan Mitkov & Jong C. Park (eds.), Proceedings of the 6th international joint Conference on natural language processing (IJCNLP 2013), 356–364. Nagoya: Asian Federation of Natural Language Processing. https://aclanthology.org/volumes/I13-1/ (accessed 1 March 2023).

2. Bates, Douglas, Martin Maechler, Benjamin Bolker & Steven Walker. 2018. lme4: Linear mixed-effects models using Eigen and S4, R package version 1.1–17. https://cran.r-project.org/web/packages/lme4/lme4.pdf (accessed 1 July 2022).

3. Boersma, Paul & David Weenink. 2021. Praat: Doing phonetics by computer, version 6.1.52 [Computer program]. Available at: http://www.praat.org/.

4. Broś, Karolina & Katarzyna Lipowska. 2019. Gran Canarian Spanish non-continuant voicing. Phonetica 76. 100–125. https://doi.org/10.1159/000494928.

5. Broś, Karolina, Marzena Żygis, Adam Sikorski & Jan Wołłejko. 2021. Phonological contrasts and gradient effects in ongoing lenition in the Spanish of Gran Canaria. Phonology 38. 1–40. https://doi.org/10.1017/s0952675721000038.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3