Could this be next for corpus linguistics? Methods of semi-automatic data annotation with contextualized word embeddings

Author:

Fonteyn Lauren12,Manjavacas Enrique1,Haket Nina3,Dorst Aletta G.1,Kruijt Eva1

Affiliation:

1. Leiden University 4496 , Leiden , Netherlands

2. KNAW Meertens Instituut Amsterdam , Amsterdam , Netherlands

3. University of Cambridge 2152 , Cambridge , UK

Abstract

Abstract This paper explores how linguistic data annotation can be made (semi-)automatic by means of machine learning. More specifically, we focus on the use of “contextualized word embeddings” (i.e. vectorized representations of the meaning of word tokens based on the sentential context in which they appear) extracted by large language models (LLMs). In three example case studies, we assess how the contextualized embeddings generated by LLMs can be combined with different machine learning approaches to serve as a flexible, adaptable semi-automated data annotation tool for corpus linguists. Subsequently, to evaluate which approach is most reliable across the different case studies, we use a Bayesian framework for model comparison, which estimates the probability that the performance of a given classification approach is stronger than that of an alternative approach. Our results indicate that combining contextualized word embeddings with metric fine-tuning yield highly accurate automatic annotations.

Funder

Platform Digital Infrastructure Social Sciences and Humanities

Publisher

Walter de Gruyter GmbH

Reference74 articles.

1. Alsentzer, Emily, John Murphy, William Boag, Wei-Hung Weng, Di Jindi, Tristan Naumann & Matthew McDermott. 2019. Publicly available clinical BERT embeddings. In Proceedings of the 2nd Clinical Natural Language Processing Workshop, 72–78. MN, USA: Association for Computational Linguistics.

2. Archer, Dawn, Tony McEnery, Paul Rayson & Andrew Hardie. 2003. Developing an automated semantic analysis system for Early Modern English. In Proceedings of the corpus linguistics 2003 conference (Centre for Computer Corpus Research on Language Technical Papers), 22–31. Lancaster: University of Lancaster.

3. Archer, Dawn, Paul Rayson, Scott Songlin Piao & Anthony Mark McEnery. 2004. Comparing the UCREL semantic annotation scheme with lexicographical taxonomies. Available at: https://api.semanticscholar.org/CorpusID:16716198.

4. Beltagy, Iz, Kyle Lo & Arman Cohan. 2019. SciBERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 3615–3620. Hong Kong: Association for Computational Linguistics.

5. Benavoli, Alessio, Giorgio Corani, Janez Demšar & Marco Zaffalon. 2017. Time for a change: A tutorial for comparing multiple classifiers through Bayesian analysis. The Journal of Machine Learning Research 36. 1–36.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3