Gettin’ sociolinguistic data remotely: comparing vernacularity during online remote versus in-person sociolinguistic interviews

Author:

Gardner Matt Hunt1ORCID,Kostadinova Viktorija2ORCID

Affiliation:

1. University of Oxford , Oxford , UK

2. University of Amsterdam , Amsterdam , Netherlands

Abstract

Abstract The following paper examines the use of the stable sociolinguistic variable (-ing) across two different interview modalities: “classic” in-person sociolinguistic interviews and identical interviews conducted remotely over online video chat. The goal of this research was to test whether a change in modality results in style-shifting, as quantified by different rates of formal/standard [-ɪŋ] versus informal/non-standard [-ɪn]. Results show that when the internal linguistic constraints governing (-ing) variation are taken into account, there is not a significant difference between modalities, suggesting both modalities are equally formal (or informal). This suggests that remote online video chats are a viable method for collecting sociolinguistic data.

Funder

Universitas 21

Publisher

Walter de Gruyter GmbH

Reference59 articles.

1. Bartón, Kamil. 2019. Mumin: Multi-modal inference. R package. Version 1.46.5. https://CRAN.R-project.org/package=MuMIn (accessed 8 December 2023).

2. Bates, Douglas M., Martin Maechler, Ben Bolker & Steve Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1). 1–48. https://doi.org/10.18637/jss.v067.i01.

3. Bates, Douglas M., Martin Maechler, Ben Bolker & Steven Walker. 2023. Lme4: Linear mixed-effects models using ‘Eigen’ and S4. R package. Version 1.1-35.1. https://CRAN.R-project.org/package=lme4 (accessed 8 December 2023).

4. Bell, Allan. 1984. Language style as audience design. Language and Society 13. 145–204. https://doi.org/10.1017/S004740450001037X.

5. Bell, Allan. 2001. Back in style: Reworking audience design. In Penelope Eckert & John R. Rickford (eds.), Back in style, 145–204. Cambridge: Cambridge University Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3