Optimal Design of Cymbal Stack Transducer in a Piezoelectric Linear Actuator by Finite Element Method

Author:

Sheng Wen1,Tiemin Zhang1,Jiantao Zhang1,Xiuli Yang1

Affiliation:

1. College of Engineering, South China Agricultural University, Guangzhou 510642, China

Abstract

Abstract The optimal design of a piezoelectric linear actuator using parametric optimum method-based finite element method (FEM) was presented. First, the FEM model of the cymbal stack transducer was generated with its initial configuration. The structural parameters were chosen as the design variables and the displacement on the top surface of the transducer taken as the objective function. Second, the zero-order optimization method was chosen as the basic tool of the structural updating. The structural optimization scheme of the cymbal stack transducer was carried out based on ANSYS parametric design language (APDL). Finally, an example of dynamic response analysis was performed on the cymbal stack transducer to verify the structural optimization scheme. The results show that the displacement on the top surface is increased by 32.9% compared with the case of initial configuration.

Publisher

Walter de Gruyter GmbH

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3