Affiliation:
1. P. G. Dept. of Mathematics , Utkal University , Vani Vihar, Bhubaneswar - 751004 , Odisha, India
Abstract
Abstract
In this paper, we consider Toeplitz operators defined on the Bergman space
L
a
2
(
ℂ
+
)
\msbm=MTMIB$L_a^2 \left( {{\msbm C}_+ } \right)$
of the right half plane and obtain Schatten class characterization of these operators. We have shown that if the Toeplitz operators 𝕿
φ
on
L
a
2
(
ℂ
+
)
\msbm=MTMIB$L_a^2 \left( {{\msbm C}_+ } \right)$
belongs to the Schatten class Sp
, 1 ≤p < ∞, then
φ
˜
∈
L
p
(
ℂ
+
,
d
ν
)
\msbm=MTMIB$\tilde \phi \in L^p \left( {{\msbm C}_+ ,d\nu } \right)$
, where
φ
˜
(
w
)
=
〈
φ
b
w
¯
,
b
w
¯
〉
$\tilde \phi \left( w \right) = \left\langle {\phi b_{\bar w} ,b_{\bar w} } \right\rangle $
w ∈ ℂ+ and
b
w
¯
(
s
)
=
1
π
1
+
w
1
+
w
¯
2
Rew
(
s
+
w
)
2
$b_{\bar w} (s) = {1 \over {\sqrt \pi }}{{1 + w} \over {1 + \bar w}}{{2 Rew} \over {\left( {s + w} \right)^2 }}$
. Here
d
ν
(
w
)
=
|
B
(
w
¯
,
w
)
|
d
μ
(
w
)
$d\nu (w) = \left| {B(\bar w,w)} \right|d\mu (w)$
, where dμ (w) is the area measure on ℂ+ and
B
(
w
¯
,
w
)
=
(
b
w
¯
(
w
¯
)
)
2
$B(\bar w,w) = \left( {b_{\bar w} (\bar w)} \right)^2 $
: Furthermore, we show that if φ ∈ Lp
(ℂ+,dv), then
φ
˜
∈
L
p
(
ℂ
+
,
d
ν
)
\msbm=MTMIB$\tilde \phi \in L^p ({\msbm C}_+ ,d\nu )$
and 𝕿
φ
∈ Sp
. We also use these results to obtain Schatten class characterizations of little Hankel operators and bounded operators defined on the Bergman space
L
a
2
(
ℂ
+
)
\msbm=MTMIB$L_a^2 \left( {{\msbm C}_+ } \right)$
Reference19 articles.
1. [1] R. Bhatia and P. Semrl, Distance between hermitian operators in Schatten classes, Proc. Edinb. Math. Soc., 39, (1996), 377–380.
2. [2] M. S. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, Reidel Dordrecht, The Netherlands, 1986.
3. [3] S. Elliott and A. Wynn, Composition operators on weighted Bergman spaces of a half plane, Proc. Edinb. Math. Soc., 54, (2011), 373–379.10.1017/S0013091509001412
4. [4] E. M Ibbaoui and H. Naqos E. O. Fallah, Composition operators with univalent symbol in Schatten classes, J. Funct. Anal., 3, (2014), 1547–1564.
5. [5] A. Feintuch, On Hankel operators associated with a class of Non-Toeplitz operators, J. Funct. Anal., 94, (2009), 1-13.