Extended Local Analysis of Inexact Gauss-Newton-like Method for Least Square Problems using Restricted Convergence Domains

Author:

Argyros Ioannis K.1,George Santhosh2

Affiliation:

1. Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, United States of America

2. Department of Mathematical and Computational Sciences, NIT Karnataka, India -575 025

Abstract

Abstract We present a local convergence analysis of inexact Gauss-Newton-like method (IGNLM) for solving nonlinear least-squares problems in a Euclidean space setting. The convergence analysis is based on our new idea of restricted convergence domains. Using this idea, we obtain a more precise information on the location of the iterates than in earlier studies leading to smaller majorizing functions. This way, our approach has the following advantages and under the same computational cost as in earlier studies: A large radius of convergence and more precise estimates on the distances involved to obtain a desired error tolerance. That is, we have a larger choice of initial points and fewer iterations are also needed to achieve the error tolerance. Special cases and numerical examples are also presented to show these advantages.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3