Analysis of Influence of Coil Gradient System on Vibration Properties and Acoustic Noise Level Generated by the Low Field MRI Device

Author:

Přibil Jiří1,Přibilová Anna2,Frollo Ivan1

Affiliation:

1. Institute of Measurement Science, SAS, Dúbravská cesta 9, Bratislava , Slovakia

2. Institute of Electronics and Photonics, FEE&IT, SUT, Ilkovičova 3, Bratislava , Slovakia

Abstract

Abstract The paper focuses on investigation of influence of the volume inserted in the scanning area of the magnetic resonance imaging (MRI) device working with a low magnetic field generated by a pair of permanent magnets on vibration and acoustic noise. In addition, its aim is to evaluate the influence of different types of used scan sequences, different settings of slice orientation and scan parameters on the energy and spectral properties of vibration and noise generated by the gradient coil system of the MRI device. Two basic measurements were performed within this work: mapping of sound pressure levels in the MRI device vicinity and parallel acquisition of vibration signals by sensors mounted on the lower and upper parts of the MRI gradient system. The paper next analyzes changes in properties of the vibration signals for the examined person lying in the scanning area compared with the situation of using only the testing phantom. Spectral characteristics of the recorded vibration signals are then analyzed statistically, and compared visually and numerically. The obtained results of the detailed analysis will be used for improvement of noise suppression algorithms applied to a speech signal recorded simultaneously with scanning of the human vocal tract for its 3D modeling.

Publisher

Walter de Gruyter GmbH

Subject

Instrumentation,Biomedical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3