Simple mathematical equations for calculating oxidation number of organic carbons, number of transferred electrons, oxidative ratio, and mole of oxygen molecule in combustion reactions

Author:

Yuen Pong Kau12ORCID,Lau Cheng Man Diana2

Affiliation:

1. Department of Chemistry , Texas Southern University , 3100 Cleburne Street , Houston , TX 77004-4597 , USA

2. Macau Chemical Society , Macao , Macao

Abstract

AbstractThe oxidation number and number of transferred electrons are two paramount parameters in the study of redox reactions. Their calculations are both important and challenging. The oxidation number of organic carbons is used in organic chemistry, biochemistry, and applied chemistry. Combustion reaction is a classical type of redox reaction, in which the oxygen molecule (O2) is the oxidizing agent. In this article, the integration of three sets of relations is explored by using the method of balancing organic combustion: (i) number of transferred electrons and oxidation number of organic carbons, (ii) mole of oxygen molecule and number of transferred electrons, and (iii) oxidative ratio, oxidation number of organic carbons, and number of transferred electrons. This method can also establish the relationships among the stoichiometric coefficients, mole of oxygen molecule, oxidative ratio, number of transferred electrons, and oxidation number of organic carbons. Furthermore, the oxidation number of organic carbons and the number of transferred electrons of a given organic compound can be determined by the derived mathematical equations.

Publisher

Walter de Gruyter GmbH

Subject

Education,Chemistry (miscellaneous)

Reference26 articles.

1. Bentley, R., Franzen, J., & Chasteen, T. G. (2002). Oxidation numbers in the study of metabolism. Biochemistry and Molecular Biology Education, 30, 288–292. https://doi.org/10.1002/bmb.2002.494030050114.

2. Brandriet, A. R., & Bretz, S. L. (2014). Measuring meta-ignorance through the lens of confidence: Examining students’ redox misconceptions about oxidation numbers, charge, and electron transfer. Chemistry Education Research and Practice, 15(4), 729–746. https://doi.org/10.1039/c4rp00129j.

3. Chadwick, O. A., Masiello, C. A., Baldock, J., Smernik, R., & Randerson, J. (2007). The oxidation state of soil organic carbon: A new proxy for carbon storage mechanisms and land use change. In Kearney Foundation of Soil Science Soil Carbon and California’s Terrestrial Ecosystems Final Report: 2002020, 1/1/2003-12/31/2004. Retrieved from http://kearney.ucdavis.edu/OLD%20MISSION/2002_Final_Reports/2002020Chadwick_FINALkms.pdf.

4. Chang, R., & Goldsby, K. A. (2013). Chemistry (11th ed.). USA: McGraw-Hill International Edition.

5. De Jong, O., Acampo, J., & Verdonk, A. (1995). Problems in teaching the topic of redox reactions: Actions and conceptions of chemistry teachers. Journal of Research in Science Teaching, 32(10), 1097–1110. https://doi.org/10.1002/tea.3660321008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3