Bounds for partition dimension of M-wheels

Author:

Hussain Zafar1,Kang Shin Min23,Rafique Muqdas4,Munir Mobeen5,Ali Usman6,Zahid Aqsa7,Saleem Muhammad Shoaib8

Affiliation:

1. Department of Mathematics and Statistics, The University of Lahore , Lahore 54500 , Pakistan

2. Department of Mathematics and Research Institute of Natural Science, Gyeongsang National University , Jinju 52828 , Korea

3. Center for General Education, China Medical University , Taichung 40402 , Taiwan

4. Department of Mathematics , BZU , Pakistan

5. Department of mathematics, Division of Science and Technology, University of Education , Lahore - Pakistan

6. Centre for advanced studies in pure and applied mathematics, Bahauddin Zakariya University Multan , Multan , Pakistan

7. Minhaj University , Lahore - Pakistan

8. Department of Mathematics, University of Okara , Okara 56300 , Pakistan

Abstract

Abstract Resolving partition and partition dimension have multipurpose applications in computer, networking, optimization, mastermind games and modelling of chemical substances. The problem of finding exact values of partition dimension is hard so one can find bound for the partition dimension of a general family of graph. In the present article, we give the sharp upper bounds and lower bounds for the partition dimension of m-wheel, Wn , m for all n ≥ 4 and m ≥ 1. Presented data generalise some already available results.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Reference40 articles.

1. Blumenthal L.M., Theory and Applications of Distance Geometry Clarendon Press, Oxford (1953).

2. Chartrand G., Eroh L., Johnson M. A., Oellermann, O. R., Resolvibility in graphs and the metric dimension of a graph Disc. Appl. Math., 105(2000), 99-133.

3. Caceres J., Hernando C., Mora M., Pelayo I.M., Puertas M.L., Seara C., Wood D.R., On the metric dimension of cartesian product of graphs SIAM J.Disc. Math., 2(21), (2007), 423-441.

4. Caceres J., Hernando C., Mora M., Pelayo I.M., Puertas M.L., Seara C., Wood D.R., On the metric dimension of some families of graphs Electronic Notes in Disc. Math., 22(2005), 129-133.

5. Khuller S., Raghavachari B., Rosenfeld A., Landmarks in graphs Discrete Appl. Math., 70 (1996), pp. 217-229.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3