Lane Departure Warning Estimation Using Yaw Acceleration

Author:

Poh Ping Em1,Hossen J.1,Eng Kiong Wong1

Affiliation:

1. Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama , Bukit Beruang , Melaka , Malaysia

Abstract

Abstract Lane departure collisions have contributed to the traffic accidents that cause millions of injuries and tens of thousands of casualties per year worldwide. Due to vision-based lane departure warning limitation from environmental conditions that affecting system performance, a model-based vehicle dynamics framework is proposed for estimating the lane departure event by using vehicle dynamics responses. The model-based vehicle dynamics framework mainly consists of a mathematical representation of 9-degree of freedom system, which permitted to pitch, roll, and yaw as well as to move in lateral and longitudinal directions with each tire allowed to rotate on its axle axis. The proposed model-based vehicle dynamics framework is created with a ride model, Calspan tire model, handling model, slip angle, and longitudinal slip subsystems. The vehicle speed and steering wheel angle datasets are used as the input in vehicle dynamics simulation for predicting lane departure event. Among the simulated vehicle dynamic responses, the yaw acceleration response is observed to provide earlier insight in predicting the future lane departure event compared to other vehicle dynamics responses. The proposed model-based vehicle dynamics framework had shown the effectiveness in estimating lane departure using steering wheel angle and vehicle speed inputs.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Aerospace Engineering,General Materials Science,Civil and Structural Engineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3