A SIMULINK implementation of a vector shift relay with distributed synchronous generator for engineering classes

Author:

Finkler Alcedir Luis1,Obregon Luana2,de Campos Mauricio2,Sausen Paulo Sérgio2,Lenz João Manoel2,Sausen Airam Teresa Zago Romcy2

Affiliation:

1. Instituto Federal Farroupinha-IFFAR, Industrial Processes and Control Group , Santa Rosa-RS , Brazil

2. Mathematical and Computacional Modeling Graduate Program, Universidade Regional do Noroeste do Estado do Rio Grande do Sul-UNIJUI , Ijui , Brazil

Abstract

Abstract In recent years, the concerns regarding global warming have encouraged an increase in research on renewable energy and distributed generation. Different renewable resources are currently being used, and bioenergy is one among them. Biogas can be produced via digesters, and its energy is converted into electricity and injected into the electrical power system for supplying to meet the local or distant demands. Nevertheless, the generation of electricity via biogas on the consumer side brings new problems and challenges to the power system controller. Protection devices, such as a vector shift relay, are one of the most important components needed to connect a bioenergy system using synchronous generators into the mains. Although distributed synchronous generators are widely used and simulated in software tools, especially in MATLAB/SIMULINK, there is still a gap in technical literature detailing how to design or model a Vector Shift Relay. In view of this subject’s importance, this article aims to assist students, researchers, and engineers by proposing a step-by-step method on how to model and implement a vector shift relay in MATLAB/SIMULINK, although the methodology may easily be used in other simulation tools. A review of the topic is presented along with a detailed description of all needed blocks and expected results.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Aerospace Engineering,General Materials Science,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3