Identification of volatile compounds and antioxidant, antibacterial, and antifungal properties against drug-resistant microbes of essential oils from the leaves of Mentha rotundifolia var. apodysa Briq. (Lamiaceae)

Author:

Salamatullah Ahmad Mohammad1

Affiliation:

1. Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University , 11 P.O. Box 2460 , Riyadh 11451 , Saudi Arabia

Abstract

Abstract The present research work investigated antioxidant, antibacterial, and antifungal properties of essential oils from the leaves of Mentha rotundifolia var. apodysa Briq. (EOR). Hydro-distillation was used to extract EOR before being subjected to the chemical characterization by the use of GC/MS. Antioxidant activity was assessed by the use of three bioassays namely 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and total antioxidant capacity (TAC). Antimicrobial potency was tested against gram-negative and gram-positive bacteria namely Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, Acinetobacter baumannii, and Klebsiella pneumonia, while antifungal activity was tested against Aspergillus niger, Candida albicans, Aspergillus flavus, and Fusarium oxysporum. EOR yield was determined to be 1.31%, with 20 compounds wherein Menthol (31.28%) and Isomenthol (14.28%) constituted the greatest amount. Regarding antioxidant activity, EOR exhibited potent antioxidant power: DPPH (IC50 value of 0.36 ± 0.03 mg/mL), FRAP (EC50 value of 0.35 ± 0.03 mg/mL), and TAC (697.45 ± 1.07 mg EAA/g). Antibacterial activity results showed that EOR had broad antibacterial activity on the tested strains. Eventually, EOR resulted in the greatest inhibition zone diameters vs S. aureus (18.20 ± 0.41 mm) followed by E. coli (17.02 ± 0.5 mm). Antifungal activity results showed that EOR exhibited potent antifungal activity and resulted in the greatest inhibition zone diameters up to 51.32 ± 1.32 mm against Aspergillus flavus, and 34.51 ± 1.07 mm against Aspergillus niger.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3