Amino-functionalized graphene oxide for Cr(VI), Cu(II), Pb(II) and Cd(II) removal from industrial wastewater

Author:

Huang Huayu123,Wang Yang12,Zhang Yubin12,Niu Zhiying12,Li Xinli12

Affiliation:

1. Shaanxi Key laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an710127, China

2. College of Urban and Environmental Science, Northwest University, Xi’an710127, China

3. College of Chemistry and Material Science, Northwest University, Xi’an710127, China

Abstract

AbstractAmino-functionalized graphene oxide (GO-NH2) was synthesized by grafting (3-aminopropyl) triethoxysilane on the graphene oxide (GO) surface. The GO-NH2 with high surface area and numerous active sites can efficiently adsorb Cr(VI), Cu(II), Pb(II) and Cd(II) ions. The maximum adsorption capacities of GO-NH2 for Cr(VI), Cu(II), Pb(II) and Cd(II) were 280.11, 26.25, 71.89 and 10.04 mg g−1, respectively. The pseudo-first-order and pseudo-second-order kinetic models were employed to describe the kinetic processes. The experimental data agreed well with the pseudo-second-order kinetic equation, and the adsorption of heavy metals onto GO-NH2 occurs via chemical adsorption. The characteristics of Cr(VI), Cu(II), Pb(II) and Cd(II) in the GO-NH2 adsorption processes were analyzed using the Langmuir and Freundlich isotherm models. The adsorption processes of Pb(II) and Cd(II) on GO-NH2 were fit by the Langmuir model. The Freundlich isotherm model was well correlated to Cr(VI) and Cu(II). The GO-NH2 is a promising material for the removal of heavy metal ions from industrial wastewater. This study provides an effective pathway to process industrial wastewater, and the GO-NH2 has a good adsorption effect for the treatment of heavy metals in industrial wastewater.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3