Empagliflozin-loaded nanomicelles responsive to reactive oxygen species for renal ischemia/reperfusion injury protection

Author:

Cheng Jianjun1,Zhang Xin1,Zheng Qiang1,Shi Shaohua2,Wang Jianping3

Affiliation:

1. Department of Urology, The Second People’s Hospital of Shanxi Province/Occupational Disease Hospitals in Shanxi Province , Taiyuan , Shanxi, 030012 , China

2. Department of Renal Transplantation, The Second People’s Hospital of Shanxi Province/Occupational Disease Hospitals in Shanxi Province , Taiyuan , Shanxi, 030012 , China

3. Department of Medicine Discipline, The Second People’s Hospital of Shanxi Province/Occupational Disease Hospitals in Shanxi Province , Taiyuan , Shanxi, 030012 , China

Abstract

Abstract The brain, heart, liver, kidney, and other organs are susceptible to the harmful effects of ischemia-reperfusion injury (IRI), where the excessive production of reactive oxygen species (ROS) following IRI contributes to tissue damage and ensuing inflammation. In recent years, researchers have designed various nanoparticles that are responsive to ROS for the treatment of IRI. Empagliflozin (EMPA), an inhibitor of the sodium-glucose cotransporter-2 commonly used in type 2 diabetes mellitus, shows promise in mitigating IRI. However, its water-insolubility and low bioavailability present challenges in fully realizing its therapeutic efficacy. To tackle this issue, we formulated EMPA-loaded nanomicelles designed to respond to ROS, aiming to prevent renal damage caused by ischemia-reperfusion. Extensive characterization confirmed the effectiveness of the formulated nanomicelles. Through simulations and release studies, we observed structural modifications in the micelles leading to the release of EMPA upon encountering ROS (H2O2). In animal studies, rats treated with EMPA-loaded micelles showed normal renal tissue architecture, with only some remaining tubular swelling. Molecular assessments revealed that IRI triggered cell apoptosis through mechanisms involving hypoxia, metabolic stress, ROS, and TNF-α elevation. EMPA treatment reversed this process by upregulating B-cell lymphoma protein 2 and reducing levels of associated X (BAX) protein, Caspase 3, and Caspase 8. These results indicate that ROS-responsive micelles could act as a spatially targeted delivery system, effectively transporting EMPA directly to the ischemic kidney. This offers a promising therapeutic strategy for alleviating the impact of renal IRI.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3