Characteristics, source, and health risk assessment of aerosol polyaromatic hydrocarbons in the rural and urban regions of western Saudi Arabia

Author:

Orif Mohamed I.1,El-Shahawi Mohammad S.2,Ismail Iqbal M. I.2,Alshemmari Hassan3,Rushdi Ahmed1,El-Sayed Mohammed A.1

Affiliation:

1. Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University , P.O. Box 80207 , Jeddah 21589 , Saudi Arabia

2. Department of Chemistry, Faculty of Sciences, King Abdulaziz University , P.O. Box 80207 , Jeddah 21589 , Saudi Arabia

3. Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research , P.O. Box: 24885 , Safat 13109 , State of Kuwait

Abstract

Abstract Air quality represents one of the most important parameters determining indoor microclimate and human comfort. Thus, the current study reports a comprehensive study on the dominant sources, organic compositions, and potential health impacts of the polyaromatic hydrocarbons (PAHs) in the atmospheric particle matters (PMs) ranging from 2.5 µm (PM2.5) to 10 µm (PM10) size in the rural and urban regions of western (Jeddah city) Saudi Arabia collected over 1 year between 2014 and 2015. The levels of PAHs in two locations namely Obhur (Urban) and Hada Alsham (Rural) were monitored over 1 year (2014 and 2015) using the gas chromatography coupled mass spectrometry. The level of ƩPAHs in Obhur (819.25 ng/m3) has a significantly high concentration of PAHs compared to Hada Alsham (Rural) (675.26 ng/m3). Indeno(1,2,3-CD)pyrene was the major contributor with an average value of 215.66 ng/m3 followed by benzo[k]fluranthene with a concentration of 150.68 ng/m3, respectively. The major contributors were indeno[1,2,3-cd]pyrene, benzo[k]fluranthene, dibenzo[a,h]anthracene, benzo[g,h]perylene, and benzo[b]fluranthene are the major contributors with contributing percentages of 26.32, 18.39, 9.07, and 8.29%, respectively. The rest of all compounds were below 4%. The highest concentrations of PAHs in Obhur (1836.99 ng/m3) and in Hada Alsham (1107.40 ng/m3) were observed in winter in January 2014. PAHs with 4–6 aromatic ring components are primarily emitted by high temperature combustion. The average values for the BaA/(BaA + Chr) and Flt/(Flt + Pyr) ratios at Obhur were found 0.58 and 0.43 and at Hada Alsham were found 0.63 and 0.38, respectively, indicating that coal/biomass burning is the major source of PAHs. Hada Alsham (rural area), the transportation system, is a significant contributor to the observed PAHs. These results reflect Saudi Arabia’s traffic load in both rural and urban areas. On road sites, the impact of petroleum combustion and vehicular emissions was also identified. The sum of the incremental lifetime cancer risk (ILCR) for all congeners for infants along the Obhur location was 2.13 × 10−6 and 1.38 × 10−6, respectively. ILCR values were less than 1.0 × 10−4, implying that PAH exposure posed an acceptable potential cancer risk in this study. Various local emission sources contributed more PAHs in many Saudi urban areas, increasing the risk of lung cancer, and the health risk. PAHs have an associated large surface area and are capable of deposition in the respiratory system with high efficiency. The total health risk assessment study also helps in alarming the toxicity at both the locations.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3