Comparative studies of two vegetal extracts from Stokesia laevis and Geranium pratense: polyphenol profile, cytotoxic effect and antiproliferative activity

Author:

Pirvu Lucia1,Neagu Georgeta1,Terchescu Iulian1,Albu Bujor1,Stefaniu Amalia1

Affiliation:

1. National Institute of Chemical Pharmaceutical R&D (ICCF), Department of Pharmaceutical Biotechnology, 112 Vitan, Sector 3, Bucharest, Romania

Abstract

AbstractIn this study, two ethanolic extracts, from Stokesia aster (Slae26) and Geranium pratense (Gpre36) respectively, were evaluated in order to assess the cytotoxic activity and potential antiproliferative activity upon the nontumorigenic human epithelial cell line derived from the mammary gland (MCF-12A) and the human breast tumor cell line (BT-20). The selection of the plant species was done on the basis of their chemical composition, specifically combinations of luteolin derivatives with caffeic and gallic acid derivatives. Therefore, the S. laevis ethanolic extract proved its capacity to inhibit the viability of both normal and tumor breast cell lines (i.e., up to 90% cell viability inhibition, IC50 = 42 µg/mL). On the contrary, the G. pratense ethanolic extract proved weak stimulatory effects on the viability of the two human breast cell lines studied. The obtained results were discussed in the contexts of computational studies and drug-likeness bioactivity of seven common luteolin derivatives: luteolin, luteolin-7-O-glucoside/cynaroside, luteolin-5-O-glucoside/galuteolin, luteolin-6-C-glucoside/isoorientin, luteolin-8-C-glucoside/orientin, luteolin-3′,4′-di-O-glucoside and luteolin-7,3′-di-O-glucoside. Computational studies have revealed that the hydrophilic behavior of luteolin derivatives (log P values) does not follow other tested parameters (e.g., polar surface area values), possibly explaining different efficacy concerning the biological properties in vitro. These predictions could be a starting point for studies on the biochemical mechanism by which luteolin derivatives induce biological effects.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3