Plant-derived bisbenzylisoquinoline alkaloid tetrandrine prevents human podocyte injury by regulating the miR-150-5p/NPHS1 axis

Author:

Sun Yue1,Yuan Chenyi2,Yu Jin1,Zhu Caifeng1,Wei Xia3,Yin Jiazhen1

Affiliation:

1. Department of Nephropathy, Key Laboratory of Kidney Disease Prevention and Control Technology of Zhejiang Province, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , No. 453 Stadium Road , Hangzhou 310007 , Zhejiang , China

2. Department of Nephropathy, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , Hangzhou 310007 , Zhejiang , China

3. Department of Digestive, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine) , Hangzhou 310007 , Zhejiang , China

Abstract

Abstract Podocytes have become a crucial target for kidney disease. Tetrandrine (TET), the main active component of a Chinese medicine formula Fangji Huangqi Tang, has shown a positive effect on various renal diseases. We aimed to investigate the effect and mechanism of TET on podocytes. The targeting relationship between microRNA (miR)-150-5p and nephrosis 1 (NPHS1) was determined by a dual-luciferase reporter gene assay. Cell proliferation, migration, and apoptosis were detected by cell counting kit-8, Transwell, and flow cytometry assays, respectively. The expression of miR-150-5p and NPHS1 was detected by RT-qPCR. The levels of Nephrin, Caspase-3, Bcl-2, Bax, E-cadherin, and α-smooth muscle actin were detected by Western blot. TET prompted cell viability and inhibited migration and apoptosis of puromycin aminonucleoside-induced human podocytes (HPC) in a dose-dependent manner. miR-150-5p directly targeted NPHS1 and was upregulated in damaged HPC. TET decreased the miR-150-5p expression and increased the level of NPHS1 and Nephrin. Overexpressed miR-150-5p inhibited the expression of NPHS1 and Nephrin, and reversed the protective effects of TET on injured HPC. TET protects the biological function of HPC by suppressing the miR-150-5p/NPHS1 axis. It reveals that TET may be a potential drug and miR150-5p is a potential therapeutic target for the treatment of podocyte injury.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3