Study of an adsorption method for trace mercury based on Bacillus subtilis

Author:

Li Yijin1,Xia Shanhong2

Affiliation:

1. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology –  Beijing , Beijing , China

2. State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences , Beijing , China

Abstract

Abstract In order to decrease the difficulty in trace mercury determination, an adsorption method for trace mercury based on Bacillus subtilis cells was proposed in this article. The adsorption process was characterized by optical microscopy and SEM. The adsorption mechanism was analyzed by IR. The adsorption performance was studied by measuring the concentration of supernate and calculating the adsorption efficiency. When adsorbing Hg2+, Bacillus subtilis cells gathered and their structure turned coarse. The IR results illustrated that functional groups bound with Hg for complexation during adsorption. Bacillus subtilis completed adsorption for trace Hg2+ in 15 min. The adsorption efficiency was maintained above 80% under low Hg2+ concentrations (<200 µg/L). The proposed study illustrates that Bacillus subtilis cells are highly efficient and easily obtained material for the adsorption of trace mercury, which shows potential to be further used in the pretreatment of trace Hg2+ detection.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3