Discoloration of methylene blue at neutral pH by heterogeneous photo-Fenton-like reactions using crystalline and amorphous iron oxides

Author:

Choquehuanca Astrid12,Ruiz-Montoya José G.12,La Rosa-Toro Gómez Adolfo12

Affiliation:

1. Laboratorio de Investigación de Electroquímica Aplicada, Facultad de Ciencias, Universidad Nacional de Ingeniería , 15333 Lima , Perú

2. Center for the Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería , 15333 Lima , Peru

Abstract

Abstract Different iron oxides were evaluated for the discoloration of methylene blue (MB) at neutral pH by heterogeneous photo-Fenton-like reactions with a UV-LED lamp. Fe3O4, α-Fe2O3, and a-FeOOH catalysts were synthesized and characterized by X-ray diffraction, scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared spectroscopy, and adsorption isotherms of N2. The results show high crystallinity and relatively low surface areas for Fe3O4 and α-Fe2O3, and amorphous structure with high surface area for the case of a-FeOOH. The discoloration of MB by iron oxides as catalysts was studied using UV-Vis spectroscopy. Despite the relative high adsorption of MB for magnetite (12%) compared to the other oxides, it shows a slow discoloration kinetics. Besides, amorphous oxide (named a-FeOOH) shows a higher discoloration kinetics with negligible adsorption capacity. The pseudo first-order kinetic constant values for Fe3O4, α-Fe2O3, and a-FeOOH are 5.31 × 10−3, 6.89 × 10−3, and 13.01 × 10−3 min−1; and the discoloration efficiencies at 120 min were 56, 60, and 82%, respectively. It was testified that low crystallinity iron oxide can be used in the efficient discoloration of MB by photo-Fenton process with a hand UV-A lamp.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3