Characterization of the elastic modulus of ceramic–metal composites with physical and mechanical properties by ultrasonic technique

Author:

Erol Ayhan1ORCID,Bilici Vildan Özkan2ORCID,Yönetken Ahmet3ORCID

Affiliation:

1. Department of Metallurgy and Materials Engineering, Afyon Kocatepe University, Technology Faculty , Afyonkarahisar , Turkey

2. Department of Physics, Faculty of Arts and Sciences, Afyon Kocatepe University , Afyonkarahisar , Turkey

3. Electrical Engineering, Faculty of Engineering, Afyon Kocatepe University , Afyonkarahisar , Turkey

Abstract

Abstract The scope of this study, that is, the effect of the elastic modulus obtained by ultrasonic method on the physical and mechanical properties of tungsten carbide (WC)-based ceramic–metal composites, which have Ni and Co metallic binder composition produced by powder metallurgy and represented by high strength and hardness criteria, was investigated. In order to obtain composite samples in the study, it was sintered in a microwave furnace at different temperatures to combine the powder particles prepared at the rate of 60% Ni, 20% Co, and 20% WC by weight. Then, the velocities and longitudinal attenuation values of longitudinal and shear ultrasonic waves along the composite sample were measured using the ultrasonic pulse-echo method. The elastic modulus of the composites was determined using ultrasonic velocities and sample density. Hardness testing, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses were also performed. The results show that the elastic modulus increases with the increase in sintering temperature and ultrasonic wave speeds, but decreases with the longitudinal attenuation value, considering the SEM images and XRD analysis. There is also a linear relationship between elastic modulus and stiffness.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3