Removal of paracetamol from aqueous solution by containment composites

Author:

Ait Hamoudi Souhila12,Brahimi Meriem3,Boucha Mouad3,Hamdi Boualem2,Arrar Jazia3

Affiliation:

1. Department of Environmental Chemistry, Scientific and Technical Research Center in Physico-Chemical Analysis (CRAPC) , Post box 384, Headquarters ex-Pasna Industrial Zone , Bou-Ismail , 42004, Tipaza , Algeria

2. Department of Physical and Theoretical Chemistry, Laboratory LPCEMAE, Faculty of Chemistry, University of Science and Technology Houari Boumediene (USTHB) , Post box 32 el Alia , Bab Ezzouar , Algiers , Algeria

3. Department of Environmental Engineering National Polytechnic School , 10 street Oudek brothers , El-Harrach , 16200, Algiers , Algeria

Abstract

Abstract Storage of wastes leads to severe problems of water pollution and neighboring matrices due to the infiltration of landfill leachate. Uncontrolled landfill and waste storage can lead to groundwater pollution, which can lead to serious health problems for the living. Engineered barriers can be a solution to these pollution problems. The purpose of this study was to develop novel composite materials – clay-based, activated carbon, cement, and PVA polymer. These composites were intended for the containment of waste in landfill. The clay (70–80%) and activated carbon (5–15%) contents were varied to obtain three different geomaterials – GM1, GM2, and GM3. In the preparation of GM3, the content of activated carbon used was higher than for GM1 and GM2, paracetamol removal capacity tested by adsorption, experiments were influenced by parameters such as the adsorbent mass, the initial solute concentration, contact time, temperature, and pH effect. The parameter of initial paracetamol concentrations was studied using a range of 50, 100, and 150 mg L−1. For a GM3 mass of 80 mg, the adsorbed amount is 14.67 mg g−1, and the contact time is 180 minutes. This study revealed that composites are efficient for the treatment of landfill leachates.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3