Microwave-assisted preparation of Ag/Fe magnetic biochar from clivia leaves for adsorbing daptomycin antibiotics

Author:

Zhang Lei1,Ai Tian1,Tian Xiaoxi1,Xu Chunmei2,Wu Yonggui3,Yu Zhongxu3,Dai Shujuan4

Affiliation:

1. School of Chemical Engineering, University of Science and Technology Liaoning , Anshan 114051 , People’s Republic of China

2. Technical Development (Engineering) Department, Shandong Hualu Hengsheng Chemical Co., Ltd , Dezhou 253019 , Shandong , People’s Republic of China

3. Technical Development (Engineering) Department, Hualu Hengsheng (JingZhou) Chemical Co., Ltd , Jingzhou 434100 , Hubei , People’s Republic of China

4. School of Mining Engineering, University of Science and Technology Liaoning , Anshan 114051 , People’s Republic of China

Abstract

Abstract Novel clivia biochar adsorbing daptomycin (DAP) was prepared by microwave digestion–anaerobic carbonization in this work. Fe/Ag submicron particles were introduced to the biochar surface based on the reducibility of biochar to enhance its adsorption capacity. Characterization confirmed that modified biochar (AF-biochar) had a higher particle size (126 μm), larger specific surface area (521.692 m2 g−1), richer pore structure, and higher thermal stability. The effects of the main variables (e.g., the solution pH, contact time, initial DAP concentration, and temperature) were investigated during adsorption. The results showed that AF-biochar could reach the adsorption equilibrium at pH 4.8 for 85 min. Besides, the adsorption capacity was 48.25 mg g−1, and the adsorption efficiency was 96.50% when the concentration of DAP was 25 mg L−1. The pseudo-second-order kinetics (R 2 = 0.9997), Langmuir equation (R 2 = 0.9999), and thermodynamics (R 2 = 0.9631) of AF-biochar fit well, indicating that the main adsorption process of AF-biochar was spontaneous, exothermic, and monolayer. Their adsorption was analyzed by physical and chemical adsorption. The main adsorption mechanisms included the electron donor–acceptor interaction, electrostatic force interaction, Lewis acid–base interaction, and H-bond interaction.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3