Hollow mushroom nanomaterials for potentiometric sensing of Pb2+ ions in water via the intercalation of iodide ions into the polypyrrole matrix

Author:

Alnuwaiser Maha Abdallah1,Rabia Mohamed2

Affiliation:

1. Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University , P.O. Box 84428 , Riyadh , 11671 , Saudi Arabia

2. Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University , Beni-Suef , 62514 , Egypt

Abstract

Abstract Herein, the synthesis of a sensor for the determination of lead (Pb2+) ions via the intercalation of iodide ions into the polypyrrole matrix is performed. It demonstrated a Nernstian slope of 31.7 mV/decade, indicating a linear response within the concentration range of 10−5–10−1 M. The detection limit achieved is 9.10−6 M, indicating the sensor’s sensitivity to low concentrations of Pb2+. The effectiveness of the Ppy/I sensor in Pb2+ sensing is confirmed through cyclic voltammetry, where a peak potential of −0.2 V is observed. The sensitivity of the sensor for Pb2+ detection is measured to be 2 µA/M. Moreover, the Ppy/I sensor exhibits a negative response to interfering ions, which enhances its selectivity for Pb2+ detection. Furthermore, when tested with natural water samples such as tap or underground water, which are typically free of lead ions, the sensor demonstrates a negative response to normal interfering ions commonly found in such samples. The Ppy/I sensor offers several advantages, including the ability to detect Pb2+ ions at very low concentrations, a flexible and adaptable design, and a cost-effective preparation technique. These features make it a promising tool for accurate and efficient detection of Pb2+ ions.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3