An extensive assessment on the distribution pattern of organic contaminants in the aerosols samples in the Middle East

Author:

Orif Mohamed I.1,El-Shahawi Mohammad S.2,Ismail Iqbal M. I.2,Rushdi Ahmed1,Alshemmari Hassan3,El-Sayed Mohammed A.1

Affiliation:

1. Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University , P.O. Box 80207 , Jeddah 21589 , Saudi Arabia

2. Department of Chemistry, Faculty of Sciences, King Abdulaziz University , P.O. Box 80207 , Jeddah 21589 , Saudi Arabia

3. Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research , P.O. Box: 24885 , Safat 13109 , State of Kuwait

Abstract

Abstract Nowadays, in spite of a significant progress in indoor air quality (IAQ), an assessable and predictive understanding of atmospheric aerosol sources, chemical composition, transformation processes, and environmental effects are still rather incomplete and therefore signifies a key research challenge in the atmospheric science. Thus, the current comprehensive review is concerned with the dominant sources, organic compositions, and potential health impacts of the organic contaminants in the atmospheric particle matters (PMs) in the Middle East (ME). The ME contributes a major impact of organic contaminants on the atmosphere along with other Asian and African countries. In the Gulf Cooperation Council (GCC) countries, the communities are noted for being the center of the great majority of the world’s oil reserves and infrastructure for producing crude oil. The review starts with a historical outlook on the scientific queries regarding major source of organic contaminants to the atmospheric aerosols over the past centuries, followed by an explanation of the distribution, sources, transformation processes, and chemical and physical properties as they are formerly assumed. Natural product chemicals from biota, manufactured organic compounds including pesticides, chlorinated hydrocarbons, and lubricants, as well as organic compounds from the use and combustion of fossil fuels make up the aerosol contamination. Thus, in the recent years, IAQ may be seen as a significant health issue because of the increase in industrial activity. Fugitive emissions from industrial processes, as well as natural and anthropogenic emissions from other sources such as forest fires, volcanic eruptions, incomplete combustion of fossil fuels, wood, agricultural waste, or leaves, are typical sources of organic pollutants to the aerosol. In the spring and early summer in the GCC countries, aerosol concentration increases because of dust storms; however, in winter, there are fewer dust storms and higher precipitation rates, and aerosol concentrations are lower. Significances of future research and major suggestions are also outlined to narrow the gap between the present understanding of the contribution of both anthropogenic and biogenic aerosols to radiative forcing, resulting from the spatial nonuniformity, intermittency of sources, unresolved composition, and reactivity.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3