Affiliation:
1. Department of Biomedicine, Biochemical Engineering College of Beijing Union University, Beijing-100023, People's Republic of China
2. School hospital, Beijing Union University, Beijing-100101, People's Republic of China
3. Analysis and Testing Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing-100190, People's Republic of China
Abstract
AbstractGinkgolide B (GB) and Puerarin (Pue) are active pharmaceutical ingredients for the treatment of Parkinson’s disease (PD); however, both are poorly water-soluble, which limits their bioavailability. The present study used the niosome vesicle encapsulation technique to prepare a novel GB composite drug. The conditions for GB–Pue niosomal complex preparation were as follows: a hydration temperature of 60°C, a hydrophilic–lipophilic balance of 10.5, a drug–carrier mass ratio of 8:100, and a surfactant–cholesterol mass ratio of 1.5:1. The niosomal complex suspension was uniformly distributed and milky white in color, with no stratification over a duration of 1 month. It had an average particle size of 187.3 nm, a particle-size distribution of 0.237, a GB encapsulation efficiency (EE) of 68.2%, a GB drug-loading rate of 90.1%, a Pue EE of 40.5%, and a Pue drug-loading rate of 83.3%. The optimal storage temperature for the niosomal complex suspension was 4°C. Following an intravenous injection of the niosomal complex suspension into the rat tail, the area under the curve (AUC) from 0 to 4 h was 54.1 h µg mL−1, with a mean residence time (MRT) of 0.96 h, a distribution half-life (T1/2α) of 0.195 h, and a total clearance of 0.003 L h−1 kg−1. The AUC and MRT of the composite prescription were 1.1- and 1.4-times those of the commercial injection, respectively, showing significantly increased sustained release and bioavailability. Moreover, the distribution of GB in the brain tissue was 1.8-times that of the commercial injection. In conclusion, the novel GB niosomal composite drug, with excellent stability, improved pharmacokinetics, and brain tissue distribution, demonstrates great potential for the delivery of GB and Pue for PD therapeutics.
Subject
Materials Chemistry,General Chemistry
Reference54 articles.
1. Research progress on neuroprotective mechanism of puerarin;Chinese J Exp Tradition Med Formulae,2015
2. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice;Biomed Pharmacother,2019
3. Effect of puerarin on HO-1 and NQO1 expression in substantia nigra of Parkinson’s disease rats;Chinese J Exp Tradition Med Formulae,2013
4. Research progress on regulatory effect and mechanism of Aroma-inducing traditional Chinese medicine on blood-brain barrier permeability;China J Chinese Mater Med,2014
5. Research progress of ginkgo biloba extract in preventing and treating Alzheimer’s disease;Pract Geriatr,2017
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献