Using calcined waste fish bones as a green solid catalyst for biodiesel production from date seed oil

Author:

Alsaiari Raiedhah A.1,Musa Esraa M.1,Alsaiari Aeshah H.1,Alsaiari Shuruq S.1,Alsaiari Sarah S.1,Rizk Moustafa A.12

Affiliation:

1. Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University , Najran , Saudi Arabia

2. Department of Chemistry, Faculty of Science, Suez Canal University , Ismailia , Egypt

Abstract

Abstract Since biodiesels are widely considered more environmentally friendly and ecologically sustainable than fuels derived from petroleum – as well as producing greener energy at a lower price – this belief has encouraged the growth of the bio-economy. The primary objective of this work was to investigate the use of a novel non-edible feedstock obtained from date seed oil for the production of environmentally friendly biodiesel. This was achieved via the application of creative and different hydroxyapatite (HAPT) heterogeneous catalysts. These catalysts were obtained from discarded fish bones that were synthesized from dried fish bone and subjected to calcination at different temperatures. This study used several analytical methods, including transmission electron microscopy, Brunauer–Emmett–Teller analysis, X-ray diffraction (XRD), and thermogravimetric analysis, to investigate the properties of a cost-effective and environmentally sustainable catalyst derived from waste fish bones. HAPT is the key component of calcined catalysts, and this was confirmed using XRD analysis. The findings revealed that the transesterification activity was optimal when the catalyst was calcined at 900°C. Moreover, this produced a maximum yield of 89% fatty acid ethyl esters (FAMEs) when optimal reaction conditions were achieved (3-h reaction time, 9:1 ethanol/oil molar ratio, and catalyst amount of 4.5 wt%). Additionally, the catalyst was found to be durable and reusable throughout the biodiesel production process. The confirmation of FAME production was achieved using gas chromatography–mass spectrometry. This approach could facilitate the production of low-cost, environmentally friendly technology. Additionally, it was established that the characteristics of the biodiesel complied with ASTM D6571, an American fuel regulation. Green energy approaches can also be beneficial for the environment, which could ultimately improve societal and economic development for the biodiesel business on a larger scale.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3