Effect of copper nanoparticles green-synthesized using Ocimum basilicum against Pseudomonas aeruginosa in mice lung infection model

Author:

Wang Wei1,Liu Liping1,Han Zhiying1

Affiliation:

1. Respiratory Department, Shanxi Children’s Hospital , Taiyuan , 030013 , China

Abstract

Abstract The frequency of lung infection induced by multi-drug resistant strains of Pseudomonas aeruginosa has significantly risen, primarily due to the inadequate effectiveness of powerful chemotherapeutic methods. This study demonstrates that the Ocimum basilicum aqueous extract and copper nanoparticles (CuNPs) exhibited significant antioxidant and anti-infectious properties under in vivo conditions. To analyze the characteristics of the CuNPs synthesized from the reaction between copper nitrate solution and the aqueous O. basilicum extract, various techniques such as energy dispersive X-ray analysis, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis, and transmission electron microscopy were employed. The in vivo study encompasses the assessment of P. aeruginosa lethal dose in mice and the disease manifestation analysis, which comprises reduction in body weight, hypothermia, bacteremia, and other parameters, over a 48 h infection period. The infected mice exhibited a notable decrease in body temperature, measuring at 25°C after 48 h, compared to the initial temperature of 39°C. Additionally, a 30% reduction in weight was seen at the conclusion of the study. To assess the effectiveness of CuNPs on lung infection caused by the calculated lethal dose and bacteremia, histopathology analysis was employed. The bacterial load in the CuNPs group was determined to be 0.5 Log10CFU/mL on Day 8, indicating a notable decrease from the initial measurement of 1.5 Log10CFU/mL on Day 1. The histopathological findings revealed a widespread and sporadic buildup of alveolar space inflammatory cells, with infiltrates observed throughout all lung sections in infected mice. Enhanced lung histology was observed in the group of animal treated with reduced exudates noted at 200 µg/kg. CuNPs demonstrated inhibitory effects on the growth of P. aeruginosa at 8 µg/mL, while at 16 µg/mL, they effectively eradicated P. aeruginosa. The research unequivocally demonstrates the efficacy of CuNPs extract in combating lung infections induced by P. aeruginosa at 200 µg/kg. The recent survey aims to further explore the biomedical characteristics of these CuNPs in order to develop a powerful treatment against this dangerous pathogen.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3